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A METHOD OF SHAKEDOWN ANALYSIS OF FRAMES AND
ARCHES

J. A. KONIG

Institute of Basic TechOlcal Research. Warsaw. Poland

Abstract-Structures. in general. are subjected to more complex load programs than those considered in the
theory of limit analysis. The shakedown theory presents general theorems allowing to estimate does the structure
adapt to the given load program or not. On the basis of previous general results [22J the present paper gives an
approximate method ofanalysis of frames and arches of arbitrary solid cross-section in the case when the influence
of axial forces on the stress state cannot be neglected. The problem reduces to the linear programming problem.
Numerical results for a portal frame and for a circular arch of rectangular cross-section are presented.

1. INTRODUCTION

THE adaptation of elastic-plastic structures to prescribed loads varying in time has been
considered first in the late twenties [1, 2]. Melan [3], Koiter [5], Prager [6], Rozenblum [7, 8]
and others presented some more or less rigorously formulated criteria of shake-down for
the general case of the elastic-plastic continuum.

Structures in general are subjected to more complex load programs than those con­
sidered in the theory oflimit analysis where all loads are assumed to depend proportionally
on a single parameter varying monotonically with time.

If an elastic-plastic structure is subjected to loads varying with time. there is a danger
of collapse before the limit load interaction surface is reached. This collapse is due to
gradually increasing plastic deformations (incremental collapse) or to alternating plastic
deformations resulting in a plastic fatigue (low cycle fatigue). It is however also possible that
plastic deformations arising in the initial cycles of loading give such a field of residual stress
that the response ofthe structure to subsequent cycles will be purely elastic.

Melan [3] and Koiter [5] formulated two theorems enabling to estimate whether the
structure does shake down to the given load program or not. However, the direct use of
those theorems in more complex cases is hindered by computational difficulties. Moreover
the engineering theories of structures (theory of piates and shells, theory of beams, etc.) are
expressed in terms of appropriate generalized variables rather than in terms of stresses and
strains. It appeared worth while, therefore, to investigate how these theorems might be
expressed in generalized quantities (see [22]). This can be done easily in the case of sandwich
structures, as it has been shown for a circular arch in Ref. [14]. Some authors merely assume
the response of a cross-section to be purely elastic when the generalized stresses remain
within the yield locus (see [13, 18]). This assumption is quite reasonable for arches and
frames of I section but may be risky in case of other cross-sections. On the other hand if we
assume that a cross-section may respond elastically only within the range of its initial
elastic domain-as it was done in Refs. [20] and [21]-then we neglect the fact that residual
stresses may change the range of perfectly elastic response of the cross-section. It was shown
in Ref. [10] that at pure bending of a beam the elastic domain shifts within certain limits.
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In Ref. [22J a method was proposed enabling to apply the Melan theorem when the
theory regarding the structure under consideration employs generalized stresses. Such a
procedure is applied to elastic-plastic plates in Ref. [23].

It was shown in [22J that Melan's theorem regarding the adaptation of a structure to a
given load program can be expressed in the following equivalent form:

a structure will shake down to the given load program if there exists a time-independent
field Q~ of generalized residual stresses (i.e. satisfying the equilibrium equations for
vanishing loads) and if there exists. for every section ~ of the structure. an elastic locus S~

such that the sum

will remain within the elastic locus S.

Here Qr stands for the actual generalized stress field. Q~ denotes the stress for a geo­
metrically identical and identically loaded structure of unlimited elastic response. An
elastic locus is defined as a domain in the space of the generalized stresses, within which the
response at any point of the section remains perfectly elastic. Certain general properties of
elastic loci were presented in Ref. [22J and some of them will be used in the present paper.

The main idea is the next. Melan's theorem can be stated as follows:

a structure shakes down to the prescribed loading program if there exists such an
independent of time state of internal stresses which is in equilibrium with one of the
possible states of load and if any variation of the load around this particular state does
not produce plastic deformations.

The generalized theorem gives an estimate of adaptability of the structure within the
frames of accuracy of an applied theory describing the stress state in terms of generalized
stresses.

Obviously such a method does not pretend to give solutions which are exact in the
sense of a three dimensional theory yet it seems to be an improvement with respect to the
hitherto results.

It appears that the concept of elastic loci proves useful in applications. Hodge and
Kalinowski [14J presented an analysis of shakedown of a circular arch with an ideal sand­
wich cross-section. Using the idea of elastic loci. the present paper develops a method of
approximate solutions for arches and frames subjected to heavy axial loads. The forms of
the cross-sections may be arbitrary. This seems to be of importance because, as will be
shown, the boundary of a shakedown domain for sandwich arch does not necessarily need
to constitute either an upper or a lower bound of the shakedown domain of arches of
uniform cross-sections. Attention is focused on the construction of the simplest possible
elastic loci using the simplest distribution of residual stresses.

For definiteness it will be assumed that the externalloa<;is the structure is subjected to
depend linearly on a set of r parameters: PI' Pc' .... Pr' Hence the solution of an clastIC
response must have the following form:

.He(~) = L p/vJ'(~):
i:;;:; 1

.ve(~) = L PiV(~)
,= J

iii!

where ~ numerates the cross-sectIons of the structure.
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The load program is assumed in the form:

3~9

i = 1. 2.... .r (1.2)

each load varies independently within the above specified limits.
Now, let the coefficients 6i be given and let us regard the r-dimensional Euclidean space

of the load parameters Pi' Let the set of all points (p~ , P2' ... , P:) such that the structure
shakes down to the load program (1.2) be called the shakedown domain and its boundary
the shakedown interaction surface (curve).

If the yield condition of the material of the structure is convex. then any shakedown
domain must also be convex (see [14J and further [22J where this requirement may be
obtained from the theorems presented therein).

2. PROPERTIES OF ELASTIC LOCI

In the bending theory of frameworks and arches there are two generalized stresses
acting at any cross-section, namely the bending moment M and the axial force N. An elastic
locus then constitutes an area in the (M, N) plane. Obviously, any elastic locus for the
cross-section is contained within the yield locus of that section.

Let us consider a cross-section as in Fig. 1, with one vertical axis of symmetry, of depth
h = H- +H\ of width B(z) and of area A; its inertia moment is denoted by J. The origin
of the coordinate system coincides with the center of gravity of the section. The form of an
elastic locus depends on the form of the cross-section as well as on the field of the residual
stress p(z) resulting from the previous plastic deformation of the cross-section.

To construct an elastic locus associated with the residual stress distribution p(z) we
assume that the cross-section responds elastically to the given stress resultants and therefore
the elastic part of the stress is

according to the elementary formula of strength of materials. The condition

100e(z)+p(z)! < 0'0

Iz,
FIG. I.

(2.1)

(2.2)
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assures the elastic behavior of the respective layer. Thus the set of inequalities (2.2) for all ­
from the domain ( - H -, H+) defines the elastic locus of the cross-section in the LV!, N)

plane.
The case when p(z) is a piece-wise linear function of: Igenerally without the requirement

of continuity) is of special interest. Let pi:) be linear for Zj < : < Zj+ I for each i = 0, L.
(n -1), where :,) = - H < : 1 < ... < :n = H +. Then to assure that the inequalities {2.2)
hold for each :, it is sufficient to satisfy the following set of inequalities:

10"'(=0)+ p(zo)1 < 0'0

lae(zl)+p(z\-O)I < 0'0

10'''(.:1)+ p(z 1 +0)1 < (Jo

!(Je(.:n_ 1) + P(Zn _ I - 0)1 < (J 0

1(J"(Zn-l)-rP(Zn-l +0)1 < (JO

l(Je(zn) + pI :n)1 < (J o·

This set contains 2(n + 1) conditions in the case of continuity up to the number of -In (the
case of discontinuity at each zJ Each of these inequalities (2.3) is linear with respect to .Y!
and N, thus the whole set delimits a polygon in the (AI, N) plane.

It may be easily seen that such a distribution p(z) contains no more than 3n - 3 free
parameters.

The condition (2.3) defining the elastic locus can be rewritten in the form:

i = 1, 2, .... III (2.-+)

where Gt 1 , Gt2, •.. , Gt", denote free parameters mentioned above. It is visible from (2.11 that
the functions J;. gj. hi are also linear with respect to the parameters 1: 1 , 1:2 " ..• :l:m'

If the boundary of an elastic locus contains a point belonging to the yield locus of the
section, then the residual stress field associated with that elastic locus is unique. Let the
generalized stresses in the limit state be Jl* and N*. The associated total and elastic stress
distributions are unique (within the limitations of the uniqueness theorem oflimit analysis).
thus the residual stress field p(z) is unique and it has a discontinuity at some point:: = ::*'
If we now write down the inequalities (2.2) for:: = ::*, we obtain two opposite inequalities
resulting in a single equality. The equality connecting M and IV means that the elastic locus
considered degenerates into a straight line segment in the (,'1,1, N) plane.

Definition: the initial elastic locus is the elastic locus under the condition plzi == 1,).

It is easy to see that this elastic locus has the form of a rhomb with the two axes of symmetry
coinciding with ;\1 and :V axes.

After exposing a method of constructing elastic loci through piece-wise linear residual
stress distributions in view of further applications. we are going to show some principal
theorems regarding the loCI.

Theorem I

Any elastic locus. after an appropriate translatJOn may be enclosed by the mltlal
elastic locus.
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Proof. Let P = (M*, N*) be any point on the initial elastic locus. Also the point P' =
(- M*. - N*) lies on that locus. It means that there exists a point z = z* of the cross­
section such that the respective stress states are

M* N*
aP(z*) = -.=:*+- = ±ao ;

J A
The difference:

(2.5)

aP(:*)-aP(:*) = ±2ao·

Now let us consider any elastic locus containing inside it that initial elastic locus translated
by a vector (jJ.. 1'), and let Qand Q' denote the points Q = (M* + J.I., N* +v); Q' = ( - M* + jJ..

- N* + v). It is easy to see that for any given residual stress distribution p(z) the difference:

aQ(z*)-aQ'(:*) = ±2ao ;

thus both these points, Q and Q' must lie on or outside of any elastic locus. That proves
the theorem.

Theorem II

If PI(Z), P2(Z) are two residual stress fields associated respectively with the elastic loci
5 I and 52' then the region 53 of all points P of the form

PI E 5I' P2 E 52' 0 < A. < 1

is contained within the elastic locus associated with the residual stress field

i, being a constant.
Proof. We have

I
N I MI IA+Tz+Pt(:) < ao

I

N, M, I
A- +):+P2(:) < ao

at all points of the sections. Thus if

N = i.N I +(l-i,)N 2 ; M = i.M t +(l-i,)M 2 ,

then

at all points of the section. This shows that any point (M, N) = P E 53 lies within the elastic
locus S.
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3. ELASTIC LOCI FOR RECTANGULAR CROSS-SECTIONS

We shall consider in the examples an arch and a frame with rectangular cross-sections:
it is worth while to present some groups of elastic loci for that cross-section. For the sake of
simplicity we introduce the following dimensionless quantities.

m
.\/

rroH1B'
:'V

n=---
2rrnHB

13.1 I

and we employ the plane (m, n) instead of (M. N). The initial elastic locus is now described
by four inequalities:

n ::; l-~m; II :2: -l+~m
(3.21

n ::; 1+'1m: n :2: -1+~m

The simplest families of elastic loci are as follows:
(a) The family of the degenerated elastic loci containing points from the yield locus.

Some of them are presented in Fig. 2.
(b) The family associated with the residual stress described in Fig. 3. Here

pI::) -
-xrr0 -+- 2xrro~

:: -::; 0

:: :2: 0

-7.0

i -1.0



A method of shakedown analysis of frames and arches 333

9(Z) 6e(1)
,aDo. a60 ,.

I
+ I

1 6
---t--"-

FIG. 3.

Superimposing the elastic stress

a
C

(.::) = a0 ( n +~m ~)

and using the conditions (2.2) we obtain:

(3.4)

n+:x ::; I - im ;
I1+Cl ::; 1+im;

II + IX ;::;: - 1+1m ;
n+ IX ;::;: - I - 1m ;

n+:x ::; I

n-IX ;::;: -1
(3.5)

(the points which have to be considered being == ±Hand == 0). Figure 4 shows that
only five of those inequalities are important and that the loci for 10:1 > ! are not useful.

(c) The family associated with the discontinuous residual stress distribution as shown
in Fig. 5. Now

=::;0

=;::;: 0

(3.6)

n

m

FIG. 4.
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t"

FIG. 5.

The resulting elastic loci are described also by the set of six inequalities (see Fig. 61.

(3.7)

n ~ -i-1im-fJ) (d);

n ~ 1- 31131 (e):

n ~ - 1+ 31fJI (f).

n ~ 1-i(m-f3) (a):

n ~ 1+1(m-f3) (bj:

n ~ -1 +t1m-p) (cl:

It is visible that practically IfJ1 ~ ~.

Putting Ie = 31f31 this family can be obtained also by applying the theorem II to the
initial elastic locus and to the loci from (a) containing the point m = - 1 : n = 0 or m = I:
n = O.

4. UPPER BOUND

Generally speaking, the upper bound shakedown theorem of Koiter [5J does not need
any reformulation in order to be used in terms of the theory employing generalized
quantities except possibly for the case where we wish to distinguish between an incremental
collapse and a low cycle fatigue.

FHi.6
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The non-adaptation results either in the incremental collapse (when the plastic deforma­
tions of the structure grow up without limits), or in the alternating plasticity causing the
collapse by plastic fatigue.

The first type of collapse requires a plastic mechanism to arise. This fact was utilized
to simplify the computation in papers [14-17].

The alternating plasticity requires the domain of variation of the elastic part of the
stress to be sufficiently broad; thus the strictly static analysis suffices to obtain the upper
bound (see [14]). The same result may be obtained by using the theorem I together with the
appropriately restated Melan theorem. This will be explained in the last two chapters.

Obviously the suitable part of the yield locus in the space of the load parameters may
also be used for that purpose.

5. LOWER BOUND

The construction of the lower bound of the shakedown domain will be based on the
generalized Melan theorem. This theorem operates with elastic loci and with residual
generalized stresses.

If the considered bar structure has k redundants, then the residual generalized stress
field (i.e. that which is in equilibrium with vanishing external loads) is described by k
parameters 1'1' 1'2'"'' 1'k and the residual moments MO(~) as well as the residual axial
forces N°(~) may be presented as below, if the parameters 1'1,1'2"'" 1'k are appropriately
chosen.

k

MO(~) = L 1'iai(~);
i=1

k

N°(~) = L 1'ib,{~),
i= 1

(5.1)

Let us assume that we choose the elastic loci from the I-parametric family which
constitutes polygons in (M, N) plane. For this purpose, for example, the elastic loci
generated by piece-wise linear residual stress fields, described by the formulae (2.4) can
serve. Thus the shakedown requires the following system of inequalities to be satisfied.

};[a1R), rL2W"", al(~)]M(~)+gi[al(~)'a2W,.··, a~~)]N(~)+hz[al(~)'a2(~)"'" al(~)] < 0

(5.2)

at all cross-sections of the structure.
The total generalized stresses are now as follows:

,
MR) = L PiMi(~)+Mo(~);

i= 1

,
N(~) = L PiNi(~)+ N°(~)

i= 1

(5.3)

[see formulae (1.1)]. When the load program is defined by (1.2) the domain of variation of
generalized stresses forms the convex hull of all the following points in the (M, N) plane:

,
M(~) = L PipfMi(~)+ MO(~)

i= 1

r

N(~) = L PiP:Ni(~)+NO(~)
i= 1

(5.4)
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f5.51

where Pi = - J i or Pi = 1 and i\JO(~) and N°(~) are given by (5.1) and do not depend on p~

It may be found that there are only 2r important combinations of f3-s Le. 2r corners (5.4)
which have to be taken into account.

Usually for bar structures (and always if the structure is loaded by concentrated loads)
we are able to show the finite set of cross sections ~ = ~ I' ~ = ~2" ..• ~ = ;q such that if
the formulae (5.2) hold for all ~ l' , .. , ~q then they hold everywhere. Therefore the
condition of adaptation of the bar structure under consideration takes the form

f;[(Xd~j)"'" ClI(OJ[ ±fJmp:";\'1m(~)+ ±/mum(~)J +gi[(Xl(~)"'" Cll(~j)J
m-"":: 1 m= 1

X [ ±Pmp:"Nm(~) + ±i'mbm(~j)l +h;[(Xl(~j)'···· Cll(~jlJ < 0
m~ 1 m~ 1

i = 1.2..... t; i=L2..... LJ

As already mentioned. there are 2r important combinations of (3-s. Therefore we obtam
t . q . 2r inequalities (5.5) to satisfy.

Obviously we are interested in finding parameters ~. I' .... ;\. :Xif~j) such that the
coefficients pf could be as high as possible. To be more precise let Pz, p~ • ...• p~ be fixed
and now we look for the highest possible value of the parameter pSI allowing to satisfy the
inequalities (5.5).

In this formulation the problem coincides with one of the fundamental problems of
linear programming. Namely with the following one:

Find the highest (lowest) value of the linear form

under the conditions:

f5.61

u

I (j>V"j+!/Ji < 0;
j= 1

i = 1.2..... Ii 15.71

(see [19J). The solution of that problem is known in the linear algebra and there is no point
in recalling it here. The algorithm used may be easily adapted for digital computer calcula­
tions.

In our case the form (5.6) reduces to.
p;

and conditions (5.5) play the part of the inequalities (5.7). We employ the parameters
;'1 ....• ~'k' :x i(:; j) and the parameter pSI as the variables x I. X 2' ...• Xu' Thus. we can obtam
a single point of the lower bound of the shakedown interaction surface. Such a procedure
has to be repeated several times with other values of the parameters pz. p~. . . p; Ll

determine a sufficient number of points of that approximated surface. The convex hull ,If
these points constitutes a lower bound of the shakedown domain.

6. CIRCULAR ARCH

Let us analyse the clamped circular arch (see Fig. ;) of a rectangular cross-section under
a two-parameter load. namely under the vertical force P and the bending moment C
For the sake of simplicity we introduce the dimensionless quantities:

c
c == ~~,-.

(Jn H - B
p

P

2(J"HB'

R
1 =

11
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p

FIG. 7.

337

(6.2)

(6.5)

The generalized stresses m(</», 11(</» are related to the load parameters c, p by the following
formulae

m(¢) = c-lpj(cos ¢-cos IX)

11(¢) = - Pcos </>.

We shall consider the case j = 5, a = 60° and the load program of the form

0< p < ps -cs < c < cs ' (6.3)

The domain of variation of generalized stresses in (m, 11) plane constitutes a parallelogram
with the following corners:

corner I p = 0; c = -Cs ; m(</» = -cs; n(</» = 0

corner II p = 0; c = Cs ; m(¢) = cs ; 11(</» = 0 (6.4)

corner III p = Ps; c = -Cs; m(¢) = -cs-IOpicos</>--!-); n(¢) = -Pscos¢

cornerlV P=Ps; C=Cs; m(</» = cs-IOPs(cos¢--!-); 11(¢)=-Pscos</>.

The formulae (6.2) show that the stress profile is a straight-line segment in the (m, 11) plane.
Thus in the shakedown analysis it will suffice to take into account only the ends of the arch,
namely the cross-sections </> = 0 and ¢ = 60°. Figure 8 presents the domains of variation
of the generalized stresses m, n at those cross-sections, when p and c vary arbitrarily within
the limits prescribed by the load program (6.3).

Upper bound
The theorem I implies that the adaptation is impossible if the domain of variation of

elastic generalized stresses cannot be contained (at least at one cross-section ofthe structure)
within any translated initial elastic locus.

In our case, if the domains from Fig. 8 have to be enclosed by appropriately translated
initial elastic locus (2.7), then all points of those domains have to satisfy the following
inequalities [the vector (b, a) denotes the translation of the locus]:

n-a ~ l-l(m-b)(a); n-a ~ -l+l(m-b)(c);

n-a ~ 1+l(m-b)(b); n-a ~ -l-l(m-b)(d).
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FIG. 8.

By comparing that rhomb with the domains from Fig. 8 we can see that it suffices to satisfy
condition (a) at the corner II and condition (d) at the corner III. Thus we obtain:

nll-a S l-~-{mll-b); n11l_a S -l-!fmUl-bl. (6.61

The combination of those inequalities gives:

After substitution of (6.4) for ep = 0 and ep = 60° we obtain respectively

(6.7\

3c,+8·5p, S 2; 3c,+O·5p, S 2. (6.8)

The second condition is unimportant because it may be deduced from the first one.
On the other hand the collapse values (in the sense of limit analysis) can be used also as

an upper bound of the shakedown curve in the (cs ' p,) plane. This gives:

C5 S 1-5p,-p;. (6.9)

The upper bound, obtained as a combination of the inequalities (6.8) and (6.9) is drawn in
Fig. 10 in the dashed line.

Remark. The formula for the case of the sandwich cross-section analogous to (6.7\
was derived by Hodge and Kalinowski in [14J directly from the definition of cyclic collapse.

Lower bowui

We shall operate first with the family of elastic loci from Fig. 7 as described by the
formulae (3.7). It is not difficult to conclude that when the elastic locus appropriate ror
the cross-section ep = 0 is found, then also the elastic loci for 0 < ep < '".f. =: 600 exist 10

the considered family.
Let the value of the parameter {3 appropriate for ¢ =: 0 be /3*. Then the following

inequalities must hold:

nIll ~ - I ...... 3{3* where U So 1;* So \.
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(6.10)""-c +8·5p < 1+ lfJ* . C + fJ* <;. p < I - 3fJ*2: 5 . s-· 2 >\ S - 3' s- ..

It is easy to find that the point Cs = j, Ps ::::: 0 belongs to the shakedown domain because
its coordinates satisfy (6.10) if {3* = O. Also the values Cs == 0·34. Ps = 0·1 L p. = O·~967

satisfy the inequalities (6.101 as well as the values:

Cs = O. P., = 1;,
By connecting the three points by straight lines we obtain the lower bound of the shake­

down curve we are looking for.
The lower bound in the neighbourhood of Cs = 0 may be improved. Namely. we

construct a new elastic locus using the theorem II. We take as the two elastic loci the
elastic locus from the Fig, 4, described by (2.101 for (X = t and the degenerated elastic locus
from Fig. 2 with one end m'" = - 0·99, n* == - 0·10. The resulting domain for the coefficient
i. = t was shown in Fig, 9. After computation we find that the point Cs = 0, Ps = 0·184

n

m

lp
0.2 s

FlO. 9.

--- ijield curve

"

OJ '.
"

-- - - upper pound

_.- [ower bound

- - -- sandwich arch

.• , elastic curve

0.5
FIG. 10.
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belongs also to the shakedown domain. Therefore the lower bound based on the three
points:

,
c, = 3'

Ps "" O·{)

Cs = 0·34

p,,,,,O·lI

Cs = ().{)

Ps "" {)·184

has the form of the dot-and-dash line in Fig. 10.
The difference between the upper and the lower bound is rather small. For the sake of

comparison the elastic interaction curve and the yield curve have been drawn also in
Fig. 10. The exact solution of the shakedown problem for the sandwich arch (i.e. of the
same yield moment and the same yield axial load) is also presented.

7. PORTAL FRAME UNDER HEAVY AXIAL LOADS

We consider the portal frame as in Fig. I L of rectangular cross-section. subjected to
the load program:

() < P < P,: -h, < h < h, OJ)

1/4 I!' 1/2
p

1/4

If 1
B {) 0 Q c p

FIG. II

H
h = -"\_.-:

.;..rloHB
s I

/.=-~""O
H

S denotes the residual horizontal reaction at points ..t and D. directed inward.
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It may be found that the most dangerous sections are at points P (in the beam). C
(in the beam). R (in the column). The generalized stresses at those cross-sections are

at P: 111 p = 2·75 p +5 h - 20 s

II p = - 0·1125 p - O· 5 h - s

at C: me = -2·25p-10h~20s
(7.3)

nc = -0·1125 p-0·5 h-s

at R: mR = -2·25p-10h-20s

nR = -p-h.

The domain of variation of generalized stresses is a parallelogram in (m. n) plane. with the
corners:

corner I p=O h = -hs

corner II p=O h = hs
(7.4)

corner III p = Ps h = -hs

corner IV p = Ps h = hs

It may be found that for all cross-sections P, C, R only the corners I and IV are important
if we employ the family of elastic loci from the Fig. 6.

Upper bound
Using the same reasoning as in the case of the arch, we obtain in the following form

the conditions which assure that no alternating plasticity can occur.

nl _nIV+lJml -m1v) < 2'e C 2' C C - •

(7.5)

These inequalities give. according to (7.3)

hs :::; 0·125 - 0·2648ps; hs :::; 0·0645-0·1125ps; hs :::; 0·0625 -0·13675ps' (7.6)

The last of those conditions is valid. We complete the upper bound by the collapse value
for hs = 0 which is

Po = 0·3725

i.e. Ps = 0·3725. Figure 12 presents these bounds in dashed line.

(7.7)
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~
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FIG. 12.

(7.8)

Lower bound

We employ the family of elastic loci from Fig. 6. It may be found that to contain the
generalized stresses (7.3) within an appropriate elastic locus from that family it suffices to
satisfy

at P: corner I satisfies (b) and (e) from (3.7)

corner IV satisfies lc) and (f) from (3.7)

at C: corner I satisfies (a) and (e) from (3.7)

corner IV satisfies (d) and (f) from (3.7)

at R: corner I satisfies (a) and (e) from (3.7)

corner IV satisfies (d) and (f) from (3.7).

Thus, we obtain eighteen inequalities. After substitution of (7.3) into (7.8) we eventually
obtain

8h, ~ 1+1·5,Bp-29s

O·5h, < l-Wp+s

4·1375p,+8h, < 1-1·5f3p+29s

O'1125p,+O'5h, < 1-31I3pl-s

15'5h, < 1-1·5Pc+3Ls

0·5h, < I - 31fJcl + s

3-4875Ps+15·5hs < 1+1·5j:ic- 3ls

Q·1125p, +0·5h, < I - 31f3c! - 5

1611, < 1- 1·5 tJ R + 305

h, < 1-3IPR:

4·375p,+16h, < 1+1·5tJR-30s

p,+h, < 1-3i/f R I.
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It may be checked that putting

343

Ps = 0·3;

we are able to satisfy all the inequalities 0.9) if

h = 0·02 (7.1 0)

5 = -0·01, 0·221 < fJR < 0·253, -0·320 < Pp < 0·284, 0·038 < Pc < 0·253

0.11)

Also the following values

Pp = -0·30;

Ps = 0·336; hs = 0·00

Pc = 0; PR= 0·1808; 5 = -0·0253
(7.12)

satisfy all the inequalities (7.9). The point Ps = 0; hs = 0·0625 obviously belongs to the
shakedown domain because it belongs to the domain of the perfectly elastic response of
the structure (see Fig. 12). This domain of elastic response may also be obtained from (7.9)
by putting

5 = Pp = Pc = PR = O.

The resulting lower bound has been shown in Fig. 12 in a dot-and-dash line.
For the sake of comparison the exact shakedown curve for that frame with no influence

of the axial force N on the yielding of the cross-section is presented in Fig. 12. This shows
that in the case of the structure considered the influence ofthe axial force is rather important.

8. CONCLUSIONS

The aim of the paper was to present a general method allowing to construct a lower
bound of shakedown in the case of frames and arches of an arbitrary cross-section for
which the influence of axial forces cannot be neglected. The construction ofan upper bound
was equally studied.

More complex structures have to be calculated with the use of computers. It has been
shown that the problem considered may be reduced effectively to a problem of linear
programming.

Both examples show that generally:

1. Neither the collapse load nor the perfectly elastic calculation give the proper value
of shakedown load parameters.

2. The use of the idealized sandwich cross-section (which is frequent and useful in
limit analysis) does not give a safe estimation oflower or upper bounds of shakedown
(as in Section 6).

3. Not only in arches but also in frames with higher axial loads the influence of the
axial force N may be important and in the frame from Section 7, for instance. the
difference can approximate 33 per cent.



J. A. KiJNIG

REFERENCES

[I] M. GRUNING. Die Tragfiihigkeit statisch unbestimmten Tragwerke aus Stahl hei beliebig hiiufig wiedaholrer
Belastung. Springer (1926).

[2J H. BLEICH. Oher die Bemessung statisch unbestimmter Stahltragwerke unter Beru ksichtung der eJastisch
plastischen Verhaltens des Baustoffes. Bauingenieur 19--20. 261 (1932).

[3J E. MELAN. Der Spannungszustand eines Hencky-Mises'schen Kontinuums bel verandlicher Belastun~

Sha. Akad. Wils. Wien. 147.7311938)
[4] E. MELAN. Zur Plastizitat des raumlichen Kontinuums. Ing. Arch. 9. 11&-126 (1938).
[5] W. T. KOlTER. A new general theorem on shakedown of elastIc-plastic structures. Proc. K. ned..H:ad. Wei

859.24 (1956).
[6J W. PRAGER. Shakedown in elastic-plastic media subjected to cycles of load and temperature. Svmp. su la

Pla.I/lClla nella SCle,,:a della Constr. (1957).
[7] V. I. ROZENBLUM. On adaptation of uneven heated elastic-plastic solIds. (in Russian). 1:[·. Akad..Vauk. SSSR

No.7. 136-138 (1957)
[8} V. I. ROZEN BLUM. On the analysis of shakedown of uneven heated elastIC' plastiC solids. (in RUSSian I. Pnkl

Mekh. Tekh. Phrs. No.5. 98-101 (1965).
[9J B. G. NEAL. The Plastic Methodsfor StruclUrai Analysis. Chapman and Hall (19561.

[10] P. G. HODGE. Plastic Analysis of Structures. McGraw-Hill (1959).
[IIJ J. HEYMAN. Plastic design of beams and plane frames for minimum matenal consumption. Q. appl..Halh. 8.

373-38111951 )
[12J 1. HEYMAN. Minimum weight of frames under shakedown loading. J. Engng Mech. Die. Am. Soc. cir. Engrs

EM4. 1790 (1958).
[13J E. BRUZZESE and G. AUGUST). Incremental collapse of a steel arch brIdge under repeated lIve and thermal

loading. Proc. Con/ Thermal Loading and Creel' (1964).
[14] P. G. HODGE and A. J. KALINOWSKI. Shakedown interaction curve for a circular arch. DOMIIT Report 1-36.

11967).
[15] D. A. GOKHFELD. Some problems of the adaptatlon theory for shells and plates. lIn Russian) Proc 0th Uniot)

Cont: Shells. Baku (1966); Moscow. Nauka (1966).
16: A. SAWCZUK. On incremental collapse of shells under cyclic loading. /[TA.H Symposium. Copenhagen

(1967); Theory of Thin Shells, pp. 328-340. Springer Verlag (1969).
[17] A. SAWCZUK. Evaluation of upper bounds to shakedown loads for shells. J. Mech. Ph.l's. Solids No.4.

291-301 (1969).
1Xl A. A CHYRAS. Methods of linear programmmg In the analysis of elastIc plastiC systems. 1.10 RUSSian). bi

Lit. Slroit. Leningrad (1969).
~19] A. CHARNES. W. W. COOPER and A. HENDERSON. An Introduction to Linear Pro~rammin~ (1953)
f20j F A. LECKIE. Shakedown pressures for flush cylindersphere shell interaction. 1. mech. En~ng Sci. 7. 367 -371

( 1965)
[21J F. A. LECKIE and R. K. PENNY, Shakedown loads for radial nozzles in spherIcal pressure vessels. In!. 1. Solid,

Slrucl.3. 743 (1967)
[221 J. A. KiiNIG. Theory of shakedown of elastic -plastlc structures. Archwm. Meclz. S{osow. 18. 227-238 (19661
[23J J. A. KONIG. Shakedown of plates. Archwm. Jleclz Stosow. 21. 623-637 (1969)

1ReceireJ 22 Decemher 1969. ret'ised 10 JUlie 1970 I

A6cTpah:T-KoHCTPYKUHH. Booowe. nO.1Berr.lk' T nporra \1 \1J.'l Harpy ;KeH 11~ oo.lee c,lO;Kllbl \1 ye'l
paccMaTpHBaeMble B TeopHH nre.1e.lblloro raBH()BeOI~ Teopu~ npl1Cnocoo:leIHl~ nre.JcTaBn~eT (JOUlfle
TeopeMbl 1l01Bon~loUlHe oueHHTb npllcnocOO;l~e\IOCrb KOHCTpyKUHH K JaHHOH nporpa.'1"le HaarrY;KeHII~

Ha OCHoBaHHH npenblllywHX pe1ynbT~lTOB (22) B HacTO~1I1eH paooTe npe::tcTaBneH npHo,HI;KeHHblli 'leTO:l
aHa,lH1a CTepJKHeBblX KOHcTpyKuHIi ,11000ro nOnepeYHOrO Ce'1eHII~ B KOTOpblX B.1HllHHe\1 o<:eBbl\ (,1.1

IlpeHe6pe'1b Henbl11. nocTaBneHHa~ npOO;le'la cBO.lHT(ll K lanaye .1HlleHHoro nporpa.\I\1l1pOBaIHl~

npencTaB,leHbl 'lHC.leHHble pely.lbTa fbi .l,l~ nopTa.lbHoH paMbl H J.l~ KpVfOBOH apKU IIP~\10Y f').lbHUI "
nOllepe'lHOrO Ce'leHHll.


